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Abstract 
 
 In analyzing the stability of a maintenance process, it is important that it not be treated in isolation 
from the reliability and risk of deploying the software that result from applying the process. 
Furthermore, we need to consider the efficiency of the test effort that is a part of the process and a 
determinate of reliability and risk of deployment. The relationship between product quality and process 
capability and maturity has been recognized as a major issue in software engineering based on the 
premise that improvements in process will lead to higher quality products. To this end, we have been 
investigating an important facet of process capability – stability – as defined and evaluated by trend, 
change, and shape metrics, across releases and within a release. Our integration of product and process 
measurement serves the dual purpose of using metrics to assess and predict reliability and risk and to 
evaluate process stability. We use the NASA Space Shuttle flight software to illustrate our approach. 
 
Index Terms - Maintenance process stability, product and process integration, reliability risk. 

 
INTRODUCTION 

  
Measuring and evaluating the stability of maintenance processes is important because of the 

recognized relationship between process quality and product quality [7]. We focus on the important 
quality factor reliability. A maintenance process can quickly become unstable because the very act of 
installing software changes the environment: pressures operate to modify the environment, the 
problem, and the technological solutions. Changes generated by users and the environment and the 
consequent need for adapting the software to the changes is unpredictable and cannot be 
accommodated without iteration. Programs must be adaptable to change and the resultant change 
process must be planned and controlled. According to Lehman, large programs are never completed, 
they just continue to evolve [11]. In other words, with software, we are dealing with a moving target. 
Maintenance is performed continuously and the stability of the maintenance process has an effect on 
product reliability. Therefore, when we analyzed the stability of the NASA Shuttle software 
maintenance process, it was important to consider the reliability of the software that the process 
produces. Furthermore, we needed to consider the efficiency of the test effort that is a part of the 
process and a determinate of reliability. Therefore, we integrated these factors into a unified model, 
which allowed us to measure the influence of maintenance actions and test effort on the reliability of 
the software. Our hypothesis was that these metrics would exhibit trends and other characteristics over 
time that would be indicative of the stability of the process. Our results indicate that this is the case.  
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 We conducted research on the NASA Space Shuttle flight software to investigate a hypothesis of 
measuring and evaluating maintenance stability. We used several metrics and applied them across 
releases of the software and within releases. The trends and shapes of metric functions over time 
provide evidence of whether the software maintenance process is stable. We view stability as the 
condition of a process that results in increasing reliability, decreasing risk of deployment, and 
increasing test effectiveness. In addition, our focus is on process stability, not code stability. We 
explain our criteria for stability; describe metrics, trends, and shapes for judging stability; document 
the data that was collected; and show how to apply our approach. Building on our previous work of 
defining maintenance stability criteria and developing and applying trend metrics for stability 
evaluation [15], in this paper we review related research projects, introduce shape metrics for stability 
evaluation, apply our change metric for multiple release stability evaluation, consider the functionality 
of the software product in stability evaluation, and interpret the metric results in terms of process 
improvements.  

 
Our emphasis in this paper is to propose a unified product and process measurement model for 

product evaluation and process stability analysis. The reader should focus on the model principles and 
not on the results obtained for the Shuttle. These are used only to illustrate the model concepts. In 
general, different numerical results would be obtained for other applications that use this model.  

 
 First, we review related research. Next, the concept of stability is explained and trend and shape 
metrics are defined. Then, we define the data and the Shuttle application environment. This is followed 
by an analysis of relationships among maintenance, reliability, test effort, and risk, both long term (i.e., 
across releases) and short term (i.e., within a release), as applied to the Shuttle. We conclude with a 
discussion of our attempts to relate product metrics to process improvements and to the functionality 
and complexity of the software. 

 
RELATED RESEARCH AND PROJECTS 

 
A number of useful related maintenance measurement and process projects have been reported in 

the literature. Briand, et al, developed a process to characterize software maintenance projects  [3]. 
They present a qualitative and inductive methodology for performing objective project 
characterizations to identify maintenance problems and needs. This methodology aids in determining 
causal links between maintenance problems and flaws in the maintenance organization and process. 
Although the authors’ have related ineffective maintenance practices to organizational and process 
problems, they have not made a linkage to product reliability and process stability.  

  
Gefen and Schneberger developed the hypothesis that maintenance proceeds in three distinct serial 

phases: corrective modification, similar to testing; improvement in function within the original 
specifications; and the addition of new applications that go beyond the original specifications [5]. 
Their results from a single large information system, which they studied in great depth, suggested that 
software maintenance is a multi-period process. In the Shuttle maintenance process, in contrast, all 
three types of maintenance activities are performed concurrently and are accompanied by continuous 
testing. 
 

Henry, et al, found a strong correlation between errors corrected per module and the impact of the 
software upgrade [6]. This information can be used to rank modules by their upgrade impact during 
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code inspection in order to find and correct these errors before the software enters the expensive test 
phase. The authors treat the impact of change but do not relate this impact to process stability.  
 

Khoshgoftarr et al used discriminant analysis in each iteration of their project to predict fault 
prone modules in the next iteration [10]. This approach provided an advance indication of reliability 
and the risk of implementing the next iteration. This study deals with product reliability but does not 
address the issue of process stability. 
 

Pearse and Oman applied a maintenance metrics index to measure the maintainability of C source 
code before and after maintenance activities [13]. This technique allowed the project engineers to track 
the "health" of the code as it was being maintained. Maintainability is assessed but not in terms of 
process stability. 
 

Pigoski and Nelson collected and analyzed metrics on size, trouble reports, change proposals, 
staffing, and trouble report and change proposal completion times [14]. A major benefit of this project 
was the use of trends to identify the relationship between the productivity of the maintenance 
organization and staffing levels. Although productivity was addressed, product reliability and process 
stability were not considered. 

 
 Sneed reengineered a client maintenance process to conform to the ANSI/IEEE Standard 1291, 

Standard for Software Maintenance [19]. This project is a good example of how a standard can provide 
a basic framework for a process and can be tailored to the characteristics of the project environment. 
Although applying a standard is an appropriate element of a good process, product reliability and 
process stability were not addressed. 

 
 Stark collected and analyzed metrics in the categories of customer satisfaction, cost, and schedule 

with the objective of focusing management's attention on improvement areas and tracking 
improvements over time [20]. This approach aided management in deciding whether to include 
changes in the current release, with possible schedule slippage, or include the changes in the next 
release. However, the authors did not relate these metrics to process stability. 
 

Although there are similarities between these projects and our research, our work differs in that we 
integrate: 1) maintenance actions, 2) reliability, 3) test effort, and 4) risk to the safety of mission and 
crew of deploying the software after maintenance actions, for the purpose of analyzing and evaluating 
the stability of the maintenance process. 

 
CONCEPT OF STABILITY 

 
TREND METRICS 
 

To gain insight about the interaction of the maintenance process with product metrics like 
reliability, two types of metrics are analyzed: trend and shape. Both types are used to assess and 
predict maintenance process stability across (long-term) and within (short-term) releases after the 
software is released and maintained. Shape metrics are described in the next section. By 
chronologically ordering metric values by release date, we obtain discrete functions in time that can be 
analyzed for trends across releases. Similarly, by observing the sequence of metric values as 
continuous functions of increasing test time, we can analyze trends within releases. These metrics are 
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defined as empirical and predicted functions that are assigned values based on release date (long term) 
or test time (short term). When analyzing trends, we note whether an increasing or decreasing trend is 
favorable [15]. For example, an increasing trend in Time to Next Failure and a decreasing trend in 
Failures per KLOC would be favorable. Conversely, a decreasing trend in Time to Next Failure and an 
increasing trend in Failures per KLOC would be unfavorable. A favorable trend is indicative of 
maintenance stability if the functionality of the software has increased with time across releases and 
within releases. Increasing functionality is the norm in software projects due to the enhancement that 
users demand over time. We impose this condition because if favorable trends are observed, they could 
be the result of decreasing functionality rather than having achieved maintenance stability. When 
trends in these metrics over time are favorable (e.g., increasing reliability), we conclude that the 
maintenance process is stable with respect to the software metric (reliability). Conversely, when the 
trends are unfavorable (e.g., decreasing reliability), we conclude that process is unstable. Our research 
investigated whether there were relationships among the following factors: 1) maintenance actions, 2) 
reliability, and 3) test-effort. We use the following types of trend metrics: 

 
1.Maintenance actions: KLOC Change to the Code  (i.e., amount of code changed necessary to add 
given functionality); 
 
2. Reliability: Various reliability metrics (e.g., MTTF, Total Failures, Remaining Failures, and Time to 
Next Failure); and 
 
3. Test effort: Total Test Time. 
 
Change Metric 
 
 Although looking for a trend on a graph is useful, it is not a precise way of measuring stability, 
particularly if the graph has peaks and valleys and the measurements are made at discrete points in 
time. Therefore, we developed a Change Metric (CM), which is computed as follows: 
 
1. Note the change in a metric from one release to the next (i.e., release j to release j+1). 
 
2.a. If the change is in the desirable direction (e.g., Failures/KLOC decrease), treat the change in 1 as 
positive. 
     
b. If the change is in the undesirable direction (e.g., Failures/KLOC increase), treat the change in 1 as 
negative. 
 
3. a. If  the change in 1 is an increase, divide it by the value of the metric in release j+1. 
    b. If the change in 1 is a decrease, divide it by the value of the metric in release j. 
 
4. Compute the average of the values obtained in 3, taking into account sign. This is the change metric 
(CM). The CM is a quantity in the range –1, 1. A positive value indicates stability; a negative value 
indicates instability. The numeric value of CM indicates the degree of stability or instability. For 
example, .1 would indicate marginal stability and .9 would indicate high stability. Similarly, -.  1 would 
indicate marginal instability and -. 9 would indicate high instability. The standard deviation of these 
values can also be computed. Note that CM only pertains to stability or instability with respect to the 
particular metric that has been evaluated (e.g., Failures/KLOC). The evaluation of stability should be 
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made with respect to a set of metrics and not a single metric. The average of the CM for a set of 
metrics can be computed to obtain an overall metric of stability. 
 
SHAPE METRICS  
 
 In addition to trends in metrics, the shapes of metric functions provide indicators of maintenance 
stability. We use shape metrics to analyze the stability of an individual release and the trend of these 
metrics across releases to analyze long-term stability. The rationale of these metrics is that it is better 
to reach important points in the growth of product reliability sooner than later. If we reach these points 
late in testing, it is indicative of a process that is late in achieving stability. We use the following types 
of shape metrics: 
 
1. Direction and magnitude of the slope of a metric function (e.g., failure rate decreases asymptotically 
with total test time). Using failure rate as an example within a release, it is desirable that it rapidly 
decrease towards zero with increasing total test time and that it have small values. 
 
2. Percent of total test time at which a metric function changes from unstable (e.g., increasing failure 
rate) to stable (e.g., decreasing failure rate) and remains stable. Across releases, it is desirable that the 
total test time at which a metric function becomes stable gets progressively smaller.  
 
3. Percent of total test time at which a metric function increases at a maximum rate in a favorable 
direction (e.g., failure rate has maximum negative rate of change). Using failure rate as an example, it 
is desirable for it to achieve maximum rate of decrease  as soon as possible, as a function of total test 
time. 
 
4. Test time at which a metric function reaches its maximum value (e.g., test time at which failure rate 
reaches its maximum value). Using failure rate as an example, it is desirable for it to reach its 
maximum value (i.e., transition from unstable to stable) as soon as possible, as a function of total test 
time. 
 
5. Risk: Probability of not meeting reliability and safety goals (e.g., time to next failure should exceed 
mission duration), using various shape metrics as indicators of risk. Risk would be low if the 
conditions in 1-4 above obtain. 
 
METRICS FOR LONG-TERM ANALYSIS 
 

We use certain metrics only for long-term analysis. As an example, we compute the following 
trend metrics over a sequence of releases: 
 
1. Mean Time to Failure (MTTF).  
 
2. Total Failures normalized by KLOC Change to the Code. 
 
3. Total Test Time normalized by KLOC Change to the Code. 
 
4. Remaining Failures normalized by KLOC Change to the Code. 
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5. Time to Next Failure. 
 
 
METRICS FOR LONG-TERM AND SHORT-TERM ANALYSIS  

 
We use other metrics for both long-term and short-term analysis. As an example, we compute the 

following trend (1) and shape (2, 3, 4, and 5) metrics over a sequence of releases and within a given 
release: 
 
1. Percent of Total Test Time required for Remaining Failures to reach a specified value. 
 
2. Degree to which Failure Rate asymptotically approaches zero with increasing Total Test Time.  
 
3. Percent of Total Test Time required for Failure Rate to become stable and remain stable. 
 
4. Percent of Total Test Time required for Failure Rate to reach maximum decreasing rate of change 
(i.e., slope of the failure rate curve). 
 
5. Maximum Failure Rate and Total Test Time where Failure Rate is maximum.  

DATA AND EXAMPLE APPLICATION 
 

We use the Shuttle application to illustrate the concepts. This large maintenance project has been 
evolving with increasing functionality since1983 [2]. We use data collected from the developer of the 
flight software of the NASA Space Shuttle, as shown in Table 1, which has two parts: 1 and 2.This 
table shows Operational Increments (OIs) of the Shuttle: OIA... OIQ, covering the period 1983-1997. 
We define an OI as follows: a software system comprised of modules and configured from a series of 
builds to meet Shuttle mission functional requirements [16]. In Part 1, for each of the OIs, we show the 
Release Date (the date of release by the contractor to NASA), Total Post Delivery Failures, and Failure 
Severity (decreasing in severity from “1” to “4”). In Part 2, we show the maintenance change to the 
code in KLOC (source language changes and additions) and the total test time of the OI. In addition, 
for those OIs with at least two failures, we show the computation of MTTF, Failures/KLOC, and Total 
Test Time/KLOC. KLOC is an indicator of maintenance actions, not functionality [8]. Increased 
functionality, as measured by the increase in the size of principal functions loaded into mass memory, 
has averaged about 2% over the last 10 OIs. Therefore, if a stable process were observed, it could not 
be attributed to decreasing functionality. Also to be noted is that the software developer is a CMM 
Level 5 organization that has continually improved its process. 

 
Because the flight software is run continuously, around the clock, in simulation, test, or flight, 

Total Test Time refers to continuous execution time from the time of release. For OIs where there was 
a sufficient sample size (i.e., Total Post Delivery Failures) -- OIA, OIB, OIC, OID, OIE, OIJ, and OIO 
-- we predicted software reliability. For these OIs, we show Launch Date, Mission Duration, and 
Reliability Prediction date (i.e., the date when we made a prediction). Fortunately, for the safety of the 
crew and mission, there have been few post delivery failures. Unfortunately, from the standpoint of 
prediction, there is a sparse set of observed failures from which to estimate reliability model 
parameters, particularly for recent OIs. Nevertheless, we predict reliability prior to launch date for OIs 
with as few as five failures spanning many months of maintenance and testing. In the case of OIE, we 
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predict reliability after launch because no failures had occurred prior to launch to use in the prediction 
model. Because of the scarcity of failure data, we made predictions using all severity levels of failure 
data. This turns out to be beneficial when making reliability risk assessments using number of 
Remaining Failures. For example, rather than specifying that the number of predicted Remaining 
Failures must not exceed one severity “1”, the criterion could specify that the prediction not exceed 
one failure of any type – a more conservative criterion [16].  

 
As would be expected, the number of pre-delivery failures is much greater than the number of post 

delivery failures because the software is not as mature from a reliability standpoint. Thus, a way 
around the insufficient sample size of recent OIs for reliability prediction is to use pre-delivery failures 
for model fit and then use the fitted model to predict post-delivery failures. However, we are not sure 
that this approach is appropriate because the multiple builds in which failures can occur and the test 
strategies used to attempt to crash various pieces of code during the pre-delivery process contrast 
sharply with the post-delivery environment of testing an integrated OI with operational scenarios. 
Nevertheless, we are experimenting with this approach in order to evaluate the prediction accuracy. 
The results will be reported in a future paper. 
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Table 1-Part 1: Characteristics of Maintained Software Across Shuttle Releases 

Operational 
Increment 

Release 
Date 

Launch 
Date 

Mission 
Duration 
(Days) 

Reliability 
Prediction 

Date 

Total 
Post  

Delivery 
Failures 

Failure 
Severity 

 
 A 

 
9/1/83 

 
No Flights 

 
 

 
12/9/85 

 
6 

One 2 
Five 3  

 
B 

 
12/12/83 

 
8/30/84 

 
6 

 
8/14/84 

 
10 

Two 2 
Eight 3 

 
C 

 
6/8/84 

 
4/12/85 

 
7 

 
1/17/85 

 
10 

Two 2 
Seven 3 
One 4 
 

 
D 
 

 
10/5/84 

 
11/26/85 

 
7 

 
10/22/85 

 
12 
 

Five 2 
Seven 3 

E 2/15/85 1/12/86 6 
 
 

5/11/89 5 One 2 
Four 3 

 F 12/17/85  
 

 
 

 
 

2 Two 3 

 
 G 

 
6/5/87 

 
 

 
 

 
 

 
3 

One 1 
Two 3 

 
 H 
 

 
10/13/88 

 
 

 
 

 
 

 
3 

Two 1 
One 3 

I 
 

6/29/89  
 

 
 

 
 

3 
 

Three 3 

J 
 

6/18/90 
 
 

8/2/91 9 7/19/91 7 Seven 3 

K 5/2/91  
 

 
 

 
 

1 One 1 
 

 
L 

 
6/15/92 

 
 

 
 

 
 

 
3 

One 1 
One 2 
One 3 

M 7/15/93  
 

 
 

 
 

1 One 3 

N 7/13/94  
 

 
 

 
 

1 One 3 

O 10/18/95 11/19/96 18 9/26/96 5 One 2 
Four 3 

 

P 7/16/96  
 

 
 

 
 

3 One 2 
Two 3 

Q 3/5/97  
 

 
 

 
 

1 One 3 
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Table 1-Part 2: Characteris tics of Maintained Software Across Shuttle Releases 

 
Operational 
Increment 

 
KLOC 

Change 

 
Total Test 

Time 
(Days) 

 
MTTF 
(Days) 

 
Total 

Failures/KLOC 
Change 

 
Total 

Test Time/ 
KLOC 

Change 
(Days) 

 
 A 

 
8.0 

 
1078 

 
179.7 

 
0.750 

 
 134.8 

 
B 

 
11.4 

 
4096 

 
409.6 

 
0.877 

 
359.3 

 
C 

 
5.9 

 
4060 

 
406.0 

 
1.695 

 
688.1 

 
D 

 
12.2 

 
2307 

 
192.3 

 
0.984 

 
189.1 

 
E 

 
8.8 

 
1873 

 
374.6 

 
0.568 

 
212.8 

 
 F 

 
6.6 

 
412 

 
206.0 

 
0.303 

 
62.4 

 
 G 

 
6.3 

 
3077 

 
1025.7 

 
0.476 

 
488.4 

 
 H 

 
7.0 

 
540 

 
180.0 

 
0.429 

 
77.1 

 
I 

 
12.1 

 
2632 

 
877.3 

 
0.248 

 
217.5 

 
J 

 
29.4 

 
515 

 
73.6 

 
0.238 

 
17.5 

 
K 

 
 21.3 

 
182 

 
 

 
 

 
8.5 

 
L 

 
34.4 

 
1337 

 
445.7 

 
0.087 

 
38.9 

 
M 

 
 24.0 

 
386 

 
 

 
 

 
16.1 

 
N 

 
10.4 

 
121 

 
 

 
 

 
11.6 

 
O 

 
15.3 

 

344 

 
68.8 

 
0.327 

 
22.5 

 
P 

 
7.3 

 
272 

 
90.7 

 
0.411 

 
37.3 

 
Q 

 
11.0 

 
75 

 
 

 
 

 
6.8 

 
RELATIONSHIPS AMONG MAINTENANCE, RELIABILITY, AND TEST EFFORT 

 
 METRICS FOR LONG-TERM ANALYSIS 
 

We want our maintenance effort to result in increasing reliability of software over a sequence of 
releases. A graph of this relationship over calendar time and the accompanying CM calculations indicate 
whether the long-term maintenance effort has been successful as it relates to reliability. In order to 
measure whether this is the case, we use both predicted and actual values of metrics. We predict reliability 
in advance of deploying the software. If the predictions are favorable, we have confidence that the  risk is 
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acceptable  to deploy the software. If the predictions are unfavorable, we may decide to delay deployment 
and perform additional inspection and testing. Another reason for making predictions is to assess whether 
the maintenance process is effective in improving reliability and to do it sufficiently early during 
maintenance to improve the maintenance process. In addition to making predictions, we collected and 
analyzed historical reliability data. These data show in retrospect whether maintenance actions were 
successful in increasing reliability. In addition, the test effort should not be disproportionate to the amount 
of code that is changed and to the reliability that is achieved as a result of maintenance actions.  

Mean Time to Failure  
 

We want Mean Time to Failure (MTTF), as computed by equation (1), to show an increasing trend 
across releases, indicating increasing reliability.  
 
Mean Time to Failure = Total Test Time/Total Number of Failures During Test  (1) 

Total Failures 
 

Similarly, we want Total Failures (and faults), normalized by KLOC Change in Code, as computed 
by equation (2), to show a decreasing trend across releases, indicating that reliability is increasing with 
respect to code changes.  
 
Total Failures/KLOC = Total Number of Failures During Test/KLOC Change in Code on the OI  (2) 
 
 We plot Equations (1) and (2) in Figure 1 and Figure 2, respectively, against Release Time of OI. 
This is the number of months since the release of the OI, using "0" as the release time of OIA. We 
identify the OIs at the bottom of the plots. Both of these plots use actual values (i.e., historical data). The 
CM value for equation (1) is -0.060 indicating small instability with respect to MTTF and 0.087 for 
equation (2) indicating small stability with respect to normalized Total Failures. The corresponding 
standard deviations are 0.541 and 0.442. Large variability in CM is the case in this application due to the 
large variability in functionality across releases. Furthermore, it is not our objective to judge the process 
that is used in this example. Rather, our purpose in showing these and subsequent values of CM is to 
illustrate our model. We use these plots and the CM to assess the long-term stability of the maintenance 
process. We show example computations of CM for equations (1) and (2) in Table 2. 
 
 

Table 2: Example Computations of Change Metric (CM) 
Operational 
Increment 

MTTF 
(Days) 

Relative 
Change 

Total 
Failures/KLOC 

Relative 
Change 

A 179.7  0.750  
B 409.6 0.562 0.877 -0.145 
C 406.0 -0.007 1.695 -0.483 
D 192.3 -0.527 0.984 0.419 
E 374.6 0.487 0.568 0.423 
J 73.6 -0.805 0.238 0.581 
O 68.8 -0.068 0.330 -0.272 
 CM -0.060 CM 0.087 
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Total Test Time 
 

We want Total Test Time, normalized by KLOC Change in Code, as computed by equation (3), to 
show a decreasing trend across releases, indicating that test effort is decreasing with respect to code 
changes.  
 
Total Test Time/KLOC = Total Test Time/KLOC Change in Code on the OI   (3) 
 

We plot Equation (3) in Figure 3 against Release Time of OI, using actual values. The CM value for 
this plot is 0.116, with a standard deviation of 0.626, indicating stability with respect to efficiency of test 
effort. We use this plot and the CM to assess whether testing is efficient with respect to the amount of 
code that has been changed. 

 
Reliability Predictions  
 
Total Failures  
 

Up to this point, we have used only actual data in the analysis. Now we expand the analysis to use 
both predictions and actual data but only for the seven OIs where we could make predictions. Using the 
Schneidewind Model [1], [9], [16], [17], 18] and the SMERFS software reliability tool [4], we show 
prediction equations, using 30 day time intervals, and make predictions for OIA, OIB, OIC, OID, OIE, 
OIJ, and OIO. This model or any other applicable model may be used [1], [4]. 

 
To predict Total Failures in the range [1,4] (i.e., failures over the life of the software), we use 

equation (4): 
 
F (∞)=α/β+Xs-1                   (4) 
 
where the terms are defined as follows: 
s: starting time interval for using failures counts for computing parameters α and β , 
α:    initial failure rate,  
β: rate of change of failure rate, and 
Xs-1:observed failure count in the range [1,s-1]. 

 
Now, we predict Total Failures normalized by KLOC Change in Code. We want predicted 

normalized Total Failures to show a decreasing trend across releases. We computed a CM value for this 
data of .115, with a standard deviation of .271, indicating stability with respect to predicted normalized 
Total Failures. 
 
Remaining Failures 
 

To predict Remaining Failures r(t) at time t,  we use equation (5) [1], [9], [17]: 
  
r(t)=F(∞)-Xt                    (5) 
 
This is the predicted Total Failures over the life of the software minus the observed failure count at time t. 
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We predict Remaining Failures, normalize them by KLOC Change in Code, and compare them with 
normalized actual Remaining Failures for seven OIs in Figure 4. We approximate Actual Remaining 
Failures at time t by subtracting the observed failure count at time t from the observed Total Failure count 
at time T, where T >>t. The reason for this approach is that we are approximating the failure count over 
the life of the software by using the failure count at time T. We want equation (5) and actual Remaining 
Failures, normalized by KLOC Change in Code, to show a decreasing trend over a sequence of releases. 
The CM values for these plots are 0.107 and 0.277, respectively, indicating stability with respect to 
Remaining Failures. The corresponding standard deviations are .617 and 715. 
 
Time to Next Failure  
 

To predict the Time for the Next Ft Failures to occur, when the current time is t, we use equation (6) 

[1], [16], [17].  
 
The terms in TF(t) have the following definitions:  
t: Current time interval; 
Xs,t: Observed failure count in the range [s,t]; and 
Ft:  Given number of failures to occur after interval t (e.g., one failure).  

 
We want equation (6) to show an increasing trend over a sequence of releases. Predicted and actual 

values are plotted for six OIs (OIO has no failures) in Figure 5. The CM values for these plots are -0.152 
and -0.065, respectively, indicating slight instability with respect to Time to Next Failure. The 
corresponding standard deviations are .693 and .630. 

 
We predicted values of Total Failures, Remaining Failures, and Time to Next Failure as indicators of 

the risk of operating software in the future: is the predicted future reliability of software an acceptable 
risk? The risk to the mission may or may be not be acceptable. If the latter, we take action to improve the 
maintained product or the maintenance process. We use actual values to measure the reliability of 
software and the risk of deploying it resulting from maintenance actions. 
 
Summary  

 
We summarize change metric values in Table 3. Overall (i.e., average CM), the values indicate 

marginal stability. If the majority of the results and the average CM were negative, this would be an alert 
to investigate the cause. The results could be caused by: 1) greater functionality and complexity in the 
software over a sequence of releases, 2) a maintenance process that needs to be improved, or 3) a 
combination of these causes.  

 
 1)s+(t]/))])F+X(/([(log[=(t)T tts,F −−ββ−αα     (6) 
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Table 3: Change Metric Summary 

Metric Actual Predicted 
Mean Time To Failure -0.060  
Total Test Time per KLOC 0.116  
Total Failures per KLOC 0.087 0.115 
Remaining Failures per KLOC 0.277 0.107 
Time to Next Failure -0.065 -0.152 
Average 0.071  

 
METRICS FOR LONG-TERM AND SHORT-TERM ANALYSIS 

 
In addition to the long-term maintenance criteria, it is desirable that the maintenance effort results in 

increasing reliability within each release or OI. One way to evaluate how well we achieve this goal is to 
predict and observe the amount of test time that is required to reach a specified number of Remaining 
Failures. In addition, we want the test effort to be efficient in finding residual faults for a given OI. 
Furthermore, number of Remaining Failures serves as an indicator of the risk involved in using the 
maintained software (i.e., a high value of Remaining Failures portends a significant number of residual 
faults in the code). In the analysis that follows we use predictions and actual data for a selected OI to 
illustrate the process: OID.  
 
Total Test Time Required for Specified Remaining Failures 
 

We predict the Total Test Time that is required to achieve a specified number of Remaining Failures, 
r(tt), at time tt ,, by equation (7) [1], [17]: 

 
We plot predicted and actual Total Test Time for OID in Figure 6 against given number of Remaining 

Failures. The two plots have similar shapes and show the typical asymptotic characteristic of reliability 
(e.g., Remaining Failures) versus Total Test Time. These plots indicate the possibility of big gains in 
reliability in the early part of testing; eventually the gains become marginal as testing continues. The 
figure also shows how risk is reduced with a decrease in Remaining Failures that is accomplished with 
increased testing. Predicted values are used to gauge how much maintenance test effort would be required 
to achieve desired reliability goals and whether the predicted amount of Total Test Time is technically and 
economically feasible. We use actual values to judge whether the maintenance test effort has been 
efficient in relation to the achieved reliability.  

 
Failure Rate 
 

In the short-term (i.e., within a release), we want the Failure Rate (1/MTTF) of an OI to decrease over an 
OI's Total Test Time, indicating increasing reliability. Practically, we would look for a decreasing trend, 
after an initial period of instability (i.e., increasing rate as personnel learn how to maintain new software). In 
addition, we use various shape metrics, as defined previously, to see how quickly we can achieve reliability 

1)(s+/)])]]t[r(/([log[=t tt −ββα       (7)  
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growth with respect to test time expended. Furthermore, Failure Rate is an indicator of the risk involved in 
using the maintained software (i.e., an increasing failure rate indicates an increasing probability of failure 
with increasing use of the software). 
 
Failure Rate = Total Number of Failures During Test/Total Test Time    (8) 
 

We plot Equation (8) for OID in Figure 7 against Total Test Time since the release of OID. Figure 7 does 
show that short-term stability is achieved (i.e., failure rate asymptotically approaches zero with increasing 
Total Test Time). In addition, this curve shows when the failure rate transitions from unstable (positive 
Failure Rate) to stable (negative Failure Rate). The figure also shows how risk is reduced with decreasing 
Failure Rate as the maintenance process stabilizes. Furthermore, in Figure 8 we plot the rate of change (i.e., 
slope) of the Failure Rate of Figure 7. This curve shows the percent of Total Test Time when the rate of 
change of Failure Rate reaches its maximum negative value. We use these plots to assess whether we have 
achieved short-term stability in the maintenance process (i.e., whether Failure Rate decreases asymptotically 
with increasing Total Test Time). If we obtain contrary results, this would be an alert to investigate whether 
this is caused by: 1) greater functionality and complexity of the OI as it is being maintained, 2) a 
maintenance process that needs to be improved, or 3) a combination of these causes. 

 
Another way of looking at failure rate with respect to stability and risk is the annotated Failure Rate of 

OID shown in Figure 9, where we show both the actual and predicted Failure Rates. We use equations (8) 
and (9) [1] to compute the actual and predicted Failure Rates, respectively, where i is a vector of time 
intervals for i≥s in equation (9).  

f(i) = α(EXP(-β(i-s+1)))                                                (9) 
 
A 30-day interval has been found to be convenient as a unit of Shuttle test time because testing can last 

for many months or even years. Thus this is the unit used in Figure 9, where we show the following events in 
intervals, where the predictions were made at 12.73 intervals: 

Release time: 0 interval, 
Launch time: 13.90 intervals, 
Predicted time of maximum Failure Rate: 6.0 intervals, 
Actual time of maximum Failure Rate: 7.43 intervals, 
Predicted maximum Failure Rate: .5735 failures per interval, and 
Actual maximum Failure Rate: .5381 failures per interval. 

 
In Figure 9, stability is achieved after the maximum failure rate occurs. This is at i = s (i.e. i = 6 intervals) 

for predictions because equation (9) assumes a monotonically decreasing failure rate, whereas the actual 
failure rate increases, reaches a maximum at 7.43 intervals, and then decreases. Once stability is achieved, 
risk decreases. 

 
Summary  
 

In addition to analyzing short-term stability with these metrics, we use them to analyze long-term 
stability across releases. We show the results in Table 4 where the percent of Total Test Time to achieve 
reliability growth goals is tabulated for a set of OIs, using actual failure data, and the Change Metrics are 
computed. Overall, the values of CM indicate marginal instability. Interestingly, except for OID, the 
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maximum negative rate of change of failure rate occurs when Failure Rate becomes stable, suggesting that 
maximum reliability growth occurs when the maintenance process stabilizes.  

 
Table 4: Percent of Total Test Time Required to Achieve Reliability Goals and Change Metrics (CM) 

Operational 
Increment 

One 
Remaining 

Failure 
(% Test Time) 

Relative 
Change 

Stable 
Failure Rate 

(% Test Time) 

Relative  
Change 

Maximum Failure 
Rate Change 
(% Test Time) 

Relative  
Change 

A 77.01  76.99  76.99  
B 64.11 0.168 64.11 0.167 64.11 0.167 
C 32.36 0.495 10.07 0.843 10.07 0.843 
D 84.56 -0.617 12.70 -0.207 22.76 -0.558 
E 83.29 0.015 61.45 -0.793 61.45 -0.630 
J 76.88 0.077 76.89 -0.201 76.89 -0.201 
O 46.49 0.395 100.00 -0.231 100.00 -0.231 
 CM 0.089 CM -0.070 CM -0.101 
 STD DEV  0.392 STD DEV  0.543 STD DEV  0.544 

SHUTTLE OPERATIONAL INCREMENT FUNCTIONALITY AND PROCESS 
IMPROVEMENT 

  
 Table 5 shows the major functions of each OI [12] along with the Release Date and KLOC Change 
repeated from Table 1. There is a not a one-for-one relationship between KLOC Change and the 
functionality of the change because, as stated earlier, KLOC is an indicator of maintenance actions, not 
functionality. However, the software developer states that there has been increasing software functionality 
and complexity with each OI, in some cases with less rather than more KLOC [8]. The focus of the early 
OIs was on launch, orbit, and landing. Later OIs, as indicated in Table 5, built upon this baseline 
functionality to add greater functionality in the form of  MIR docking and the Global Positional System, 
for example. Table 6 shows the process improvements that have been made over time on this project, 
indicating continuous process improvement across releases.  
 
 The stability analysis that was performed yielded mixed results: about half are favorable and half are 
unfavorable. Some variability in the results may be due to gaps in the data caused by OIs that have 
experienced insufficient failures to permit statistical analysis. Also, we note that the values of CM are 
marginal for both the favorable and unfavorable cases. Although there is not pronounced stability neither 
is there pronounced instability. If there were consistent and large negative values of CM, it would be 
cause for alarm and would suggest the need to perform a thorough review of the process. This is not the 
case for the Shuttle. We suspect but cannot prove that in the absence of the process improvements of 
Table 6, the CM values would look much worse. It is very difficult to associate a specific product 
improvement with a specific process improvement. A controlled experiment would be necessary to hold 
all process factors constant and observe the one factor of interest and its influence on product quality. This 
is infeasible to do in industrial organizations. However, we suggest that in the aggregate a series of 
process improvements is beneficial for product quality and that a set of CM values can serve to highlight 
possible process problems.  
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Table 5: Shuttle Operational Increment Functionality 
 
Operational 
Increment 

 
Release  

Date 

 
KLOC  
Change 

 
Operational Increment Function 

 
A 

 
9/1/83 

 
8.0 

 
Redesign of Main Engine Controller. 

 
B 

 
12/12/83 

 
11.4 

 
Payload Re-manifest Capabilities. 

 
C 

 
6/8/84 

 
5.9 

 
Crew Enhancements. 

 
D 

 
10/5/84 

 
12.2 

 
Experimental Orbit Autopilot. Enhanced Ground Checkout. 

 
E 

 
2/15/85 

 
8.8 

 
Western Test Range. Enhance Propellant Dumps.  

 
F 

 
12/17/85 

 
6.6 

 
Centaur. 

 
G 

 
6/5/87 

 
6.3 

 
Post 51-L (Challenger) Safety Changes.  

 
H 

 
10/13/88 

 
7.0 

 
System Improvements. 

 
I 

 
6/29/89 

 
12.1 

 
Abort Enhancements. 

 
J 

 
6/18/90 

 
29.4 

 
Extended Landing Sites. Trans-Atlantic Abort Code Co-
Residency. 

K  
5/21/91 

21.3 Redesigned Abort Sequencer.  
One Engine Auto Contingency Aborts. 
Hardware Changes for New Orbiter. 

L 6/15/92 34.4 Abort Enhancements. 
M 7/15/93 24.0 On-Orbit Changes. 
N 7/13/94 10.4 MIR Docking. On-Orbit Digital Autopilot Changes.  
O 10/18/95 15.3 Three Engine Out Auto Contingency. 
P 7/16/96 7.3 Performance Enhancements. 
Q 3/5/97 11.0 Single Global Positioning System. 
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Table 6: Chronology  of Process Improvements 
Year in which Process 

Improvement Introduced Process Improvement 

1976 Structured Flows 

1977 Formal Software Inspections 

1978 Formal Inspection Moderators 

1980 Formalized Configuration Control 

1981 Inspection Improvements 

1982 Configuration Management Database 

1983 Oversight Analyses 

1984 
Build Automation 
Formalized Requirements Analysis 

1985 
Quarterly Quality Reviews 
Prototyping 

1986 
Inspection Improvements 
Formal Requirements Inspections 

1987 Process Applied to Support Software 

1988 
Reconfiguration Certification 
Reliability Modeling and Prediction 

1989 Process Maturity Measurements 

1990 Formalized Training 

1992 Software Metrics 
 

CONCLUSIONS 
 

As stated in the Introduction, our emphasis in this paper was to propose a unified product and process 
measurement model for both product evaluation and process stability analysis. We were less interested in 
the results of the Shuttle stability analysis, which were used to illustrate the model concepts. We 
conclude, based on both predictive and retrospective use of reliability, risk, and test metrics, that it is 
feasible to measure and assess both product quality and the stability of a maintenance process. The model 
is not domain specific. Different organizations may obtain different numerical results and trends than the 
ones we obtained for the Shuttle.  
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Figure 2. Total Failures per KLOC Across Releases
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Figure 4. Reliability of Maintained Software -- Remaining Failures
Normalized by Change to Code

Months Since Release of First OI
0 3.4 9.27 13.17 17.5 81.6 145.6

0

0.2

0.4

0.6

0.8

1

Predicted Actual

        OI A               B              C              D              E              J              O

 

 

 

OI      A             B            C              D            E             J              O

Figure  3 .  To ta l  Tes t  T ime per  KLOC Across  Re leases
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Figure 5. Reliability of Maintained Software -- Time to Next Failure
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Figure 7. OID Failure Rate
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Figure 8. OID Rate of Change of Failure Rate
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Figure 9.  OID Failure Rate
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